Most people don’t have personal access to a dyno – instead they’re forced to 
either hire that expensive tool or do without. However, it’s possible on many 
cars to use the airflow meter output signal as a good guide to the performance 
improvements you’re making – or not making, as the case may be. If the output of 
the airflow meter shows that the engine is consuming more air, chances are that 
it is also making more power. 
That information can be very valuable when you’re making tuning changes that 
all fall within a range that’s safe for the engine. So for example, what air/fuel ratio gives best power? That depends on the specific engine – its mechanical 
design, the working of other engine management systems (eg how cam timing is 
varied), and what modifications have been made. 
In a typical naturally aspirated engine, any full-load air/fuel ratio from 
about 13.0 to 10:1 will be ‘safe’ – but which gives best power? It’s not 
sufficient to state that the answer is ‘12.5:1’, or any other number. What’s 
needed is some experimentation across a range of viable values. 
The answer that you find may surprise you....
Doing It
	 
	
	
	
In this case we were experimenting with the full-load air/fuel ratio of a 
Toyota Prius. The Prius normally stays in closed loop (ie the oxygen sensor 
controlling the air/fuel ratio in a feedback system) all of the time. The result 
is a constant air/fuel ratio when the engine is running of 14.7:1. As we’ve 
covered in a previous story Altering Closed Loop Mixtures) 
, we’ve used the Simple Voltage Switch 
kit working off the airflow meter output to disconnect the oxy sensors above a 
certain load threshold...
	 
	
	
	
... with the mixtures in this forced open loop mode set by a Digital Fuel 
Adjuster kit. 
So, what air/fuel ratio should we set for best power? As we said, in any car 
that’s a problematic question but in the case of the Prius, it’s damn-near 
impossible to answer off the cuff. Consider for instance that the Prius engine 
uses the Atkinson cycle, where the expansion ratio is much greater than the 
compression ratio. This oddity is achieved by unique valve timing, with the 
engine also using adjustable intake valve timing. Nominal compression ratio is 
sky-high at 13.5:1! Also, since the normal air/fuel ratio is 14.7:1, wouldn’t 
the engine be optimised in power output for this air/fuel ratio? Finally, the 
Prius is difficult - if not impossible - to dyno because its hybrid 
petrol/electric driveline shuts down momentarily when wheelspin is detected.
	 
	
	
	
In short, it looked as if using the airflow meter voltage output and doing 
some intensive road testing would be a very good way to get a handle on what 
mixtures work best in this engine.
The Tools
	 
	
	
	
To use this technique you’ll need a way of measuring air/fuel ratios and a 
multimeter. At a pinch you can get away with using a cheap LED Mixture Meter 
working off the car’s narrow band oxygen sensor (see Real World Air/Fuel Ratio Tuning), but preferably a professional level air/fuel ratio meter 
like this MoTeC unit should be used. 
	 
	
	
	
You’ll also need a good multimeter – one that has a peak hold facility makes 
things easier, and the meter should also have good resolution. Whether the 
airflow meter outputs a voltage or a frequency doesn’t matter – the multimeter 
will be able to measure either. You’ll also need a way of varying full-load 
air/fuel ratios – whether that’s with an interceptor, a change in fuel pressure, 
or another technique.
As important as the test instruments is the test regime that you’ll use. When 
doing this sort of road testing you should take pains to make sure that the 
tests are absolutely repeatable. In other words, if you do one lot of tests in 
one direction and another lot in the other, it’s quite likely that you’ll end up 
with results that aren’t very helpful. In our situation we drove around a large 
country road block and did all the tests while heading uphill along the same 
stretch of road. (In the case of the Prius that also ensured we had an identical 
level of battery assist each time – ie the high voltage battery was at the same 
starting level each run.) 
Testing
	 
	
	
	
We started off by setting the Digital Fuel Adjuster (DFA) map settings to 
zero, with the Simple Voltage Switch set so that the oxy sensors were disconnected at 
load site #80. In other words, when airflow meter voltage exceeded about 3.2 
volts, the air/fuel ratio started going rich - as it automatically does in this 
car when the oxy sensor signal is lost. In fact, this configuration results in a 
full-load air/fuel ratio (AFR) of 11.5:1. The multimeter was installed to monitor the airflow meter output voltage and the MoTeC air/fuel ratio meter was stuck to the inside of the windscreen.
In this configuration, the peak voltage output of the airflow meter was 
3.7209V. Another run was undertaken and the voltage output this time peaked at 
3.7191V – just 0.04 per cent difference! (Not all the runs repeated as well as 
this one but it does show how close multiple runs can be.) 
Changes were then made to the map tune of the DFA to provide full-load 
air/fuel ratios of 13.5:1, and then 12.6:1. Measurement showed that as the AFRs 
got richer, the peak airflow meter output increased. 
The DFA was then adjusted to provide still richer mixtures – firstly 10.8:1 
(again the airflow meter voltage went up!) and then a very rich 10.4:1. 
Incredibly, the airflow meter peak output continued to increase!
In fact, the results looked like this:
| Peak Load Air/Fuel Ratio
 | Airflow Meter Volts
 | 
| 13.5 | 3.5396 | 
| 12.6 | 3.5993 | 
| 11.5 | 3.7191 | 
| 10.8 | 3.7979 | 
| 10.4 | 3.8994 | 
As can be seen, the airflow meter output voltage was about 0.36V higher at an 
AFR of 10.4:1 than it was at 13.5:1. That’s 10 per cent....
	 
	
	
	
When graphed with a line of best fit, the results look like this. It’s clear 
that the airflow meter output voltage rises in a definable relationship with 
increasingly rich full-load mixtures. But where would it end? We don’t know – an 
AFR of 10.4:1 is rich enough for us... and at that AFR, no black smoke was evident 
out of the exhaust.
	
	
		
			| It’s worth making the point – especially for those skipping through this 
article – that we are in no way suggesting that the relationship shown here 
between mass airflow and air/fuel ratio is typical – ie that it holds true for 
lots of cars. In fact, most authoritative sources suggest that power should be 
falling away at mixtures in the Tens. However, the point of this story is to 
show that what suits one engine may well not suit another...and that the ‘airflow 
meter dyno’ is a potentially good way of finding out what air/fuel ratios 
do suit. | 
	
	
Reality Check
	 
	
	
	
But perhaps the increasing airflow meter output voltage didn’t in fact 
correspond to an increase in power from the engine? To make sure that we weren’t 
barking up the wrong tree, we undertook a performance test at two different 
air/fuel ratios. These were rolling 60-90 km/h times, taken in hilly terrain but 
very repeatable. 
The first performance run was done with the full-load AFR of 10.4:1. This 
resulted in a 6.3 second time. Then the DFA was re-mapped to provide a full-load 
AFR of 13.7:1. Measurement of the airflow meter output voltages at these two 
AFRs had shown around a 10 per cent difference in output, but would the 
difference be realisable on the road? 
It was... the 60-90 km/h split with the leaner AFR was measurably slower at 6.5 
seconds. 
Conclusion
We could have kept on trying different air/fuel ratios, measuring airflow 
meter output voltages and then doing stopwatch runs. (And of course the only 
cost is in time and a bit of fuel!) 
However, for my money, I think that the writing is clearly on the wall. This 
engine gives best power with really rich air/fuel ratios... 
Of course, at these AFRs emissions will be hugely up over standard (although 
only when well away from any loads that would be encountered in the Australian 
emissions test cycle) and the full-throttle fuel consumption will be much 
increased. However, these aren’t the sort of mixtures likely to be encountered 
in the vast majority of normal driving – they’ll be used only when all-out 
performance is actually wanted.
And if I can have a noticeable increase in full-throttle performance – or, 
alternatively, drive gently and get awesome economy and emissions – then that’s 
pretty good!
And the airflow meter ‘dyno’? As was shown in this case, conventional 
knowledge doesn’t always show what works best in the case of specific engines. 
If you can be sure that the range of mixtures (or whatever other aspect you’re 
tuning) stays within the ballpark that’s safe for the engine, it’s a technique 
well worth exploring...