Magazines:  Real Estate Shopping: Adult Costumes  |  Kids Costumes  |  Car Books  |  Guitars |  Electronics
This Issue Archived Articles Blog About Us Contact Us
SEARCH


Making Things Part 7 - Lightweight Design

Designing for minimum weight

by Julian Edgar

Click on pics to view larger images

At a glance...

  • Make parts perform multiple functions
  • Look at what others have done
  • Use material that's only strong enough to do the job
  • Make things small
  • Weigh everything
Email a friend     Print article

It’s nearly a year since the last in this discontinuous series. In the last story, Part 6, we covered the ideas of stress and strain, while in previous parts we’ve covered everything from design to using taps and dies (see the breakout box below for the full list.) Now it’s time to look at another fundamental, and something which you almost never see covered in textbooks.

And the topic? – designing for minimum weight.

Note that here we’re not talking about the selection of the material (eg carbon fibre versus chrome moly steel), and neither are we talking about a full scale design analysis that quantifies the stress on each component. Nope, here we’re talking a much broader philosophy. So how can designs achieve minimum weight?

Making Things, Part 1 - Forces in structures Making Things, Part 1

Making Things, Part 2 - Cutting holes to make things lighter Making Things, Part 2

Making Things, Part 3 – More on holes Making Things, Part 3

Making Things, Part 4 – Taps and dies Making Things, Part 4

Making Things, Part 5 – Jigs and templates Making Things, Part 5

Making Things, Part 6 – Strength of materials Making Things, Part 6

1. Make Parts Perform Multiple Functions

Cars have become fat and heavy. Even a small car like a Corolla now weighs 1300kg (and I know it’s no longer ‘small’ but still...) and it appears that engineers don’t even turn a hair at adding brackets, structures, accessories and redundancies to their designs.

Click for larger image

Let’s say you’re building a full car. Obviously an engineer will have to assess and pass the final design but even within those constraints, there are still many ways to achieve an outcome. Take for example the front suspension. What is the absolute minimum that the chassis must provide in order that it can locate the bits and pieces?

But before that, what are the bits and pieces that must be located? Considering a double wishbone suspension, the chassis must provide:

  • Wide-spaced mounting pivots for the lower wishbone

  • Mounting pivot points for the upper wishbone

  • Upper spring mount

  • Upper damper mount

  • Anti-roll bar mounts

Allied points for consideration in designing the front end (in a front engine car with front wheel steering!) include the:

  • Engine mounts

  • Steering rack mounts

Sure, maybe it’s all pretty obvious. But now the key question becomes: how can some of these functions be integrated into the one assembly? That is, how can a single part perform multiple functions?

For example, the upper wishbone mounts may be able to be integrated into a chassis member that also takes the vehicle’s weight acting through the spring. Now, since this member will have to be strong (it’s supporting that corner’s weight, remember), can it also be used to support an engine mount? Or, to take that more broadly, be part of the structure that supports the engine? In turn that would feed the force of the engine’s weight (inertial as well as static) straight through to the upper spring mount, and via the spring, through the tyre to the ground. And since the instantaneous forces acting on the upper damper mount are likely to be much higher than the forces acting through the spring, how can we use this same member to support the upper damper mount as well?

From this prelude it’s obvious this member will have to be strong (and so relatively heavy), but if it can handle the upper wishbone mounts, the upper spring seat, the upper damper mount and help support the engine, well, then it’s earning its keep.

You can then do the same mental exercise for the lower wishbone mounts and the anti-roll bar mounts. In fact, can the anti-roll bars mounts be integrated into the upper wishbone/engine/spring/damper structure, so saving some more weight? (Stiff anti-roll bars can develop quite some force at their mounts!)

In many respects the key point is not as many people think – how can high loads be well-spread. Instead, it’s how can high loads be concentrated so that one member can be designed strongly to cope with all that can be thrown at it – and so other areas can be made far lighter. To put it another way, the metalwork that supports the engine’s weight will probably be strong enough to be part of the assembly that also supports the upper wishbone mounts, the spring mount and the damper. Providing these functions separately will near double the weight of that section of the chassis.

A final thought: racing cars that use stressed engines and/or transaxles are following this same how-can-a-single-part-perform-multiple-functions idea. In that case, the strength of the engine and/or transaxle can be utilised to become part of the chassis of the car.

2. Look at What Others Have Done

Above I made a snide comment about current car designers. However, it’s absolutely vital when designing anything for minimum weight that you look hard at what other designers and engineers have done. It’s not for nothing that at the pits of any race meeting you’ll see, where possible, race car engineers walking around looking at other cars. And don’t limit your inspection to current machines.

Lightweight engineering of vehicles started over 100 years ago with fixed wing aircraft. In addition to using a self-made internal combustion engine (one exceptionally light for its developed power), the Wright brothers also knew all about lightweight designs that were sufficiently strong. The fact that they didn’t have Kevlar thread and carbon fibre skins is completely irrelevant – the physical forces acting on the various surfaces are just the same today.

In addition to fixed wing aircraft, the airships of the 1920s and 1930s show exceptional use of aluminium space frame structures, while stand-out race cars (including the Maserati ‘bird-cage’) and the first monocoque race cars are all food for thought. The 1930s and 1940s transition from steel chassis cars (often with wooden bodies) to full steel monocoque cars (and the same occurred in railway rolling stock - Budd was the leader in the US) also makes for very interesting study. That’s especially the case as the new bodies had to have clear and exceptional advantages over the old for them to be readily accepted.

Designs that have changed little over time are particularly interesting. We’re so used to assuming that tomorrow’s designs will be better than today’s that many people forget that some designs are nearly fully optimised, and consequently have changed little. Except in materials, a current diamond-framed bicycle is little different to its brother of the late 1800s. In fact, to go further, many of today’s avant-garde bicycle use designs that are clearly fundamentally weaker than traditional bikes.

When looking at the work of other designers, consider two points. One, the idea covered above, is: have they made a single part perform multiple functions? If they have, it’s likely that the finished result is lighter.

Click for larger image

The other is: have they got a better ‘take’ on the fundamental forces involved than later designers? This one sounds a bit silly: I mean, how can blokes working without computers have any idea? But you might be surprised: they might well have - either through build-it-and-then-work-it-until-it-breaks engineering, or lacking the luxury of super new materials, by analysing stuff until the last gram of surplus weight cries for mercy. These ideas are perhaps best illustrated by small racing sailing boats: the sailing rigs take enormous forces, are light, and use materials that are often quite pedestrian.

It sounds a bit ho-hum, but a browse in your local major reference library on the following topics (and don’t forget, universities and colleges will normally have no problems with an ‘outsider’ simply looking at the books) is likely to open your eyes to the possibilities:

Click for larger image

First aircraft (eg search under ‘Wright Flyer’)...

Click for larger image

...Sailing boats and other wind-driven craft (especially in sailing rigs and hull materials)...

Click for larger image

...Airships (search under ‘Hindenburg’ – this pic is of the USS Shenandoah)...

Click for larger image

...Monocoque racing cars...

Click for larger image

...Tubular frame racing cars...and...

Click for larger image

...History of bicycles (this one is from 1897!).

3. Use Material That’s Only Strong Enough to do the Job

subtitled: don’t be lazy...

Click for larger image

Let’s think about a D-shackle that holds a sway bar in its pivoting bushes. I don’t think I’ve ever seen one that isn’t pressed from a single piece of flat steel bar. But if you’re after minimum weight, that’s crazy!

Why? Well, the forces acting in the shackle are not the same throughout the shackle. The flat ends, those that have the bolts through them, are subjected to bending as the sway bar tries to move away from the mount. So these parts need to be strong enough to resist these forces. But, because it’s in tension, the curved part of the shackle can be made from much thinner material. If appropriate sway bar links are used at the ends of the ‘bar, the curved part of the bush shackle will never be subjected to bending.

Now a sway bar bush shackle that’s fabricated from three parts, or that has had the curved part reduced in thickness, sounds a bit anal: how far is this bloke going to go? But that‘s why I’ve put the subtitle: don’t be lazy. If you want a competitive advantage, or to go where others have not, every single fine detail needs to be examined.

Yes, I could make this bracket from a piece of bar, or tube, or an I-beam. But where does it have to be strong and where can it be relatively weak? The answer is not going to be found in an off-the-shelf pre-formed steel shape.

And it’s in this area more than many others where composite plastic materials have a major advantage: their thicknesses can vary at will. Intersections can be thicker; the far ends of cantilevers thinner. But even with traditional materials like steel and aluminium, much better matching of strength to application can be made by careful fabrication, or if the budget extends that far, by dedicated castings. It will be slower to produce and be a more complex job, but it will be likely as strong while being a lot lighter.

A final simple example: a car chassis made from steel tubes shouldn’t use the same wall thickness and tube diameter throughout.

4. Make Things Small

Smaller things are lighter than larger things. And they’re smaller not just because there is less material in them, but because the stresses are less and so the strength of the material can be kept lower. In cars (and all machines that move), lighter also equals less inertia – easier to get moving, easier to stop, and easier to change direction. In turn that means to achieve the same performance, less engine power, smaller brakes and smaller tyres and wheels can be used. All in turn lighter!

Click for larger image

Going small applies whether you’re talking engine selection, wheel diameter, in-cabin space, fuel tank size – literally anything and everything. Alec Issigonis, the designer of the original and iconic Mini, used 10-inch wheels. Then and now, such small diameter wheels are pretty well unheard of. But by making the wheels and tyres small, he was able to capitalise on interior space (and of course the transverse front-wheel drive engine and incredibly compact suspension also had much to do with this!). As a result, the whole car size could be reduced.

Making things smaller is the easiest way of saving weight: even without changing anything else at all, the gains can be immense. So rather than saying: what do I need to perform this function?, say instead: what’s the smallest part I can use to perform this function?

5. Weigh Everything

Click for larger image

Absolutely vital for lightweight design is a set of accurate scales. The maximum mass capability of the scales will depend on what you’re building, but you really do need to be able to read down to tens of grams.

So: do I use an off-the-shelf through-bolt here or do I have a threaded shaft custom made - one that is thinner in the middle? (And ‘custom made’ might be as simple as grinding away part of its thickness.)

This bracket could be made this way or this way – and just by plonking the raw materials on the scales you’ll get an immediate indication of the likely weight outcome.

Major items – like wheels, tyres, springs, dampers, seats, half-shafts, (full!) radiators and oil coolers - must always be weighed. For these big items, use scales designed for measuring human body weight – cheap and easy. No wrecker or retailer of new goods is going to stop you taking sample weights – and on a lightweight car, a saving of 20kg might improve your power/weight ratio by the equivalent of 5hp at the engine!

If you’re building a full car, keep a running tally of the overall weight. This will comprise two columns – one estimated and one actual. As you progress in the build, more and more ‘estimated’ will become ‘actual’. If you want to get really motivated, work it out in terms of how much horsepower you’re effectively losing for each additional 10 kilograms.

Conclusion

Clearly if you’re modifying a car, or even building a car, it’s vital that safety is maintained. I am not talking about necking-down through-bolts on suspension bushes, for example. (But keep in mind that many ‘camber kits’ do just this!) However, without compromising safety, or requiring that you use exotic, hard to handle materials, it’s possible to take a lot of weight out of a creation.

But the first step is that you become absolutely focussed...

Doing It

Click for larger image

One of the few cars we’ve featured over the years where the modification process had minimum weight as a major aim was Ian Richards’ Daihatsu Mira – see Mighty Midget

Ian weighed literally everything coming out of the car and going into it. In addition to replacing steel body panels with carbon fibre, and some glass with acrylic, he also looked at the mass of such things as the steering wheel, steering column and engine cam cover (new, lighter replacements made) and even lost 1.8kg by removing surplus steel brackets.

The result was nearly 300 hp/tonne from just a 1 litre turbo engine...

Did you enjoy this article?

Please consider supporting AutoSpeed with a small contribution. More Info...


Share this Article: 

More of our most popular articles.
Modifying the regen braking system on a Toyota Prius

DIY Tech Features - 15 December, 2004

A World First: Modifying Regen Braking

The incredible land speed record Bluebird

Special Features - 3 April, 2006

World's Greatest Cars, Part 1

Single-handedly erecting the framework for a home workshop

DIY Tech Features - 26 August, 2008

Building a Home Workshop, Part 3

The concrete

DIY Tech Features - 21 February, 2012

A New Home Workshop, Part 4

How to use files to smooth and shape

DIY Tech Features - 17 January, 2008

Using Hand Tools - Files

An ultra high pressure do-it-yourself water injection system

Technical Features - 22 April, 2008

The H2O Way, Part 2

A bloody nightmare...

DIY Tech Features - 6 March, 2012

A New Home Workshop, Part 5

One of the best electronic car modification tricks you ever saw

DIY Tech Features - 15 October, 2013

Pots aren't just variable resistors

Reducing drag

DIY Tech Features - 10 July, 2012

Reducing the drag on square-back cars

Beginners' guide to slipping through the air easily

Technical Features - 8 March, 2008

Low Drag Car Aerodynamics

Copyright © 1996-2017 Web Publications Pty Limited. All Rights ReservedRSS|Privacy policy|Advertise
Consulting Services: Magento Experts|Technologies : Magento Extensions|ReadytoShip